Special unipotent representations of real classical groups and theta correspondence

Ma, Jia-Jun

(joint with Dan Barbasch, Binyong Sun and Chengbo Zhu)

Classical groups and special unipotent representations

	G	\mathbf{G}	\mathbf{G}^{\vee}	
D_{n}	$\mathrm{O}(p, 2 n-p)$	$\mathrm{O}(2 n, \mathbb{C})$	$\mathrm{O}(2 n, \mathbb{C})$	D_{n}
C_{n}	$\mathrm{Sp}(2 n, \mathbb{R})$	$\mathrm{Sp}(2 n, \mathbb{C})$	$\mathrm{SO}(2 n+1, \mathbb{C})$	B_{n}
B_{n}	$\mathrm{O}(p, 2 n+1-p)$	$\mathrm{O}(2 n+1, \mathbb{C})$	$\mathrm{Sp}(2 n, \mathbb{C})$	C_{n}
C_{n}	$\mathrm{Mp}(2 n, \mathbb{R})$	$\mathrm{Sp}(2 n, \mathbb{C})$	$\mathrm{Sp}(2 n, \mathbb{C})$	C_{n}
D_{n}	$\mathrm{O}^{*}(n)$	$\mathrm{SO}(2 n, \mathbb{C})$	$\mathrm{SO}(2 n, \mathbb{C})$	D_{n}
C_{n}	$\mathrm{Sp}(p, n-p)$	$\mathrm{Sp}(2 n, \mathbb{C})$	$\mathrm{SO}(2 n+1, \mathbb{C})$	B_{n}
A_{n}	$\mathrm{U}(p, n-p)$	$\mathrm{GL}(n, \mathbb{C})$	$\mathrm{GL}(n, \mathbb{C})$	A_{n}
A_{m}	$\mathrm{U}(r, m-r)$	$\mathrm{GL}(m, \mathbb{C})$	$\mathrm{GL}(m, \mathbb{C})$	A_{m}

Theorem (Barbasch-M.-Sun-Zhu)

Arthur-Barbasch-Vogan's conj. on special unipotent repn. holds for G :
All specail unipotent representations of G are unitarizable.

Barbasch-Vogan's definition of unipotent representation

G : a real reductive group.
Nilpotent orbit $\check{\mathcal{O}}$ in \mathbf{G}^{\vee}.
$\rightsquigarrow \varphi: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathbf{G}^{\vee}$ (Jacobson-Morozov)
\rightsquigarrow an infinitesimal character $\mathrm{d} \varphi\left(\frac{1}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right) \leftrightarrow \lambda_{\mathcal{O}^{\vee}}$
\rightsquigarrow the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}}$ with inf. char. $\lambda_{\check{\mathcal{O}}}$

- Definition (Barbasch-Vogan):

An irr. admissible G-repn. is called special unipotent if

$$
\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi)=\mathcal{I}_{\check{\mathcal{O}}}
$$

$\Longleftrightarrow \pi$ has inf. char. $\lambda_{\check{\mathcal{O}}}$ and $\mathrm{AV}_{\mathbb{C}}(\pi)=\overline{\mathcal{O}}$

- \mathcal{O} : the Lusztig-Spaltenstein-Barbasch-Vogan dual of $\check{\mathcal{O}}$,
which is a (metaplectic) special nilpotent orbit.
■ $\operatorname{Unip}_{\check{O}}(G):=\{$ special unipotent repn. attached to $\check{\mathcal{O}}\}$.

Conjecture/Open problems

■ Major open problem: Classify the unitary dual of a reductive group:

$$
\widehat{G}_{\text {unitary }}=\{\text { irr. unitary repn. of } G\} .
$$

- Philosophy: $\operatorname{Unip}(G)=$ the building blocks of the unitary dual.

■ Conjecture: $\operatorname{Unip}_{\check{\mathcal{O}}}(G)$ consists of unitary representations.

- Question: How many elements are there in $\operatorname{Unip}_{\check{\mathcal{O}}}(G)$?

■ Question: How to construct elements in $\operatorname{Unip}_{\check{\mathcal{O}}}(G)$?

- Barbasch-Vogan 1985: Complete classification of unipotent repn. of complex reductive groups.
■ Vogan 1986: Classify the unitary dual of $G L(n)$.
- Barbasch 1989: Classify the unitary dual of complex classical groups.
- Altas of Lie group: \rightsquigarrow complete answer for exceptional groups.

Counting (\mathfrak{g}, K)-module with a paticular asso. variety

■ Fix regular inf. char. $\lambda \in \mathfrak{h}^{*} / W$
■ integral Weyl group

$$
W(\lambda):=\{w \in W \mid\langle\lambda-w \lambda, \check{\alpha}\rangle \in \mathbb{Z}, \forall \alpha \in \Delta(\mathfrak{g}, \mathfrak{h})\}
$$

Double cell \mathcal{D} in $\widehat{W(\lambda)} \longleftrightarrow$ the specail repn. $\tau_{0} \in \mathcal{D}$
\longrightarrow truncated induction $J_{W(\lambda)}^{W} \tau_{0}$
$\xrightarrow{\text { Springer corr. }} \mathcal{O}$.
■ Let $\mu \in \lambda+X^{*}\left(X^{*}\right.$ is the weight lattice $)$,

$$
W_{\mu}=\{w \in W \mid w \cdot \mu=\mu\} .
$$

■ $\mathscr{G}_{\lambda}(\mathfrak{g}, K)$: the Groth. gp. of (\mathfrak{g}, K)-modules with inf. char. λ.
■ Lemma:

$$
\begin{aligned}
& \#\left\{\pi \in \operatorname{Irr}_{\mu}(\mathfrak{g}, K)(G) \mid \mathrm{AV}_{\mathbb{C}}(\pi)=\overline{\mathcal{O}}\right\} \\
& =\sum_{\substack{\tau \in \mathcal{D} \\
\mathcal{D} \rightsquigarrow \mathcal{O}}}\left[\tau: 1_{W_{\mu}}\right] \cdot\left[\tau: \mathscr{G}_{\lambda}(\mathfrak{g}, K)\right] \\
&
\end{aligned}
$$

Counting unipotent representations I

■ Example: $G=\operatorname{Sp}(2 n, \mathbb{R})$

- $\lambda_{\check{\mathcal{O}}} \in \rho(G)+X^{*}$
\rightsquigarrow special representation $\tau \leftrightarrow \mathcal{O}$
■ $\mathscr{G}_{\rho}(G)$: the Groth. gp. of (\mathfrak{g}, K)-modules with inf. char. ρ.

$$
\# \operatorname{Unip}_{\mathcal{O} \vee}(G)=2^{l} \cdot\left[\tau: \mathscr{G}_{\rho}(G)\right]
$$

$$
W(\mathrm{Sp}(2 n))=S_{n} \ltimes\{ \pm 1\}^{n},
$$

$$
\mathscr{G}_{\rho}(\operatorname{Sp}(2 n, \mathbb{R}))=\sum_{\substack{p, q, t, s, \sigma \in S_{s},}} \operatorname{Ind}_{S_{t} \times W_{2 s} \times W_{p} \times W_{q}}^{W_{n}} \operatorname{sgn} \otimes(\sigma \times \sigma) \otimes \mathbf{1} \otimes \mathbf{1} .
$$

$■\left[\tau: 1_{W_{\lambda_{\mathcal{O}}}}\right]=1$.
■ $\left[\tau: \mathscr{G}_{\rho}(G)\right]$ is counted by painted bi-partitions $\operatorname{PBP}(\check{\mathcal{O}})$.

Example of PBP

Nilpotent orbits with "good/bad parity"

- Bad parity (must occurs with even multiplicity in $\check{\mathcal{O}}$):

$$
\begin{cases}\text { even number, } & \text { when } \mathbf{G}^{\vee} \text { is type } B \text { or } D \\ \text { odd number, } & \text { when } \mathbf{G}^{\vee} \text { is type } C\end{cases}
$$

- $\check{\mathcal{O}}$ has "good parity" if $\check{\mathcal{O}}$ only contains

$$
\begin{cases}\text { odd rows, } & \text { when } \mathbf{G}^{\vee} \text { is type } B \text { or } D \\ \text { even rows, } & \text { when } \mathbf{G}^{\vee} \text { is type } C\end{cases}
$$

- $\lambda_{\check{\mathcal{O}}}$ is integral.

■ Example of good parity:

Reduction to the "good parity"

■ Consider $G=\operatorname{Sp}(2 n, \mathbb{R})$.

- $\check{\mathcal{O}}$ decompose into two parts $\check{\mathcal{O}}_{g}$ (good parity) and $\check{\mathcal{O}}_{b}$ (bad parity).
- Assume $\check{\mathcal{O}}_{b}=\left\{r_{1}, r_{1}, \cdots, r_{k}, r_{k}\right\}$.

Theorem (Let $\left.\check{\mathcal{O}_{b}^{\prime}}=\left\{r_{1}, \cdots, r_{k}\right\} \in \operatorname{Nil}_{\mathrm{GL}}.\right)$
$\begin{array}{ccc}\operatorname{Unip}_{\check{\mathcal{O}}_{b}^{\prime}}\left(\mathrm{GL}_{\mathbb{R}}\right) \times \operatorname{Unip}_{\check{\mathcal{O}}_{g}}\left(\mathrm{Sp}_{\mathbb{R}}\right) & \xrightarrow{1-1} & \operatorname{Unip}_{\check{\mathcal{O}}}\left(\mathrm{Sp}_{\mathbb{R}}\right) \\ \left(\pi^{\prime}, \pi_{0}\right) & \mapsto & \operatorname{Ind}_{\substack{\operatorname{Sp}(2 n, \mathbb{R})}}^{\substack{\operatorname{GL}\left(\left|\check{O}_{b}^{\prime}\right|, \mathbb{R}\right) \times \operatorname{Sp}\left(2 n_{0}, \mathbb{R}\right) \times U}} \pi^{\prime} \otimes \pi_{0}\end{array}$

$$
\operatorname{Unip}_{\check{\mathcal{O}}_{b}^{\prime}}(\mathrm{GL})=\left\{\operatorname{Ind} \underset{j=1}{\otimes} \operatorname{sgn}_{\mathrm{GL}\left(r_{j}, \mathbb{R}\right)}^{\epsilon_{j}} \mid \epsilon_{j} \in \mathbb{Z} / 2 \mathbb{Z}\right\}
$$

- Use theta correspondence to construct $\operatorname{Unip}_{\check{\mathcal{O}}_{g}}(G)$.

■ We assume $\check{\mathcal{O}}$ has good parity from now on.

Example of descent sequences

Kraft-Procesi's resolution of singularities of the closure of complex nilpotent orbits.

Descent of nilpotent orbits: $G=\operatorname{Sp}(2 n, \mathbb{R})$

- Take $\check{\mathcal{O}} \in \operatorname{Nil}^{g p}\left(\mathfrak{g}^{\vee}\right)$ (nilpotent orbits with good parity).
- Descent sequence on the dual side:

$$
\mathcal{O}^{\vee}=\mathcal{O}_{2 a}^{\vee} \quad \mathcal{O}_{2 a-1}^{\vee} \quad \cdots \quad \mathcal{O}_{0}^{\vee}
$$

$\mathcal{O}_{i}^{\vee}=$ removing the first rows of \mathcal{O}_{i+1}^{\vee}.

- Descent sequence of real classical groups:

$$
G=G_{2 a} \quad G_{2 a-1} \quad \ldots \quad G_{0}
$$

- $G_{2 k}$ is a symplectic group allow $G_{0}=\operatorname{Sp}(0, \mathbb{R})=$ the trivial group.
- $G_{2 k-1}=\mathrm{O}\left(p_{k}, q_{k}\right)$
- \mathcal{O}_{i}^{\vee} is nilpotent orbit of $\mathbf{G}_{i}{ }^{\vee}$

■ $\left(G_{i}, G_{i-1}\right)$ forms a reductive dual pair.

- $\mathcal{O}_{i}=$ delete the first col. of \mathcal{O}_{i+1} and may add one box back.

Example of descent sequences

Ohta's resolution of singularities of a nilpotent orbit closure in symmetric pairs.

Construction of elements in $\operatorname{Unip}_{\check{\mathcal{O}}}(G)$

■ $\chi_{j} \in\left\{\mathbf{1}, \mathrm{sgn}^{+,-}, \mathrm{sgn}^{-,+}, \operatorname{det}\right\}$
■ Define a smooth repn. of $G=G_{2 a}$ (the symplectic group).

$$
\pi_{\chi}:=\left(\omega_{G_{2 a}, G_{2 a-1}} \widehat{\otimes} \omega_{G_{2 a-1}, G_{2 a-2}} \widehat{\otimes} \cdots \widehat{\otimes} \omega_{G_{1}, G_{0}} \otimes \chi\right)_{G_{2 a-1} \times G_{2 a-2} \times \cdots \times G_{0}}
$$

Theorem (Barbasch-M.-Sun-Zhu)

Let $\check{\mathcal{O}}^{\vee}$ be an orbit with good parity. Then

- either $\pi_{\chi}=0$ or
- $\pi_{\chi} \in \operatorname{Unip}_{\check{\mathcal{O}}}(G)$ and unitarizable.
- Moreover,

$$
\operatorname{Unip}_{\mathcal{O} \vee}(G)=\left\{\pi_{\chi} \mid \pi_{\chi} \neq 0\right\}
$$

Example: Coincidences of theta lifting

Lift to $G=\operatorname{Sp}(6, \mathbb{R})$ from real forms of $\mathbf{G}=\mathrm{O}(4, \mathbb{C})$. $\check{\mathcal{O}}=3^{2} 1^{1}$ and $\mathcal{O}=2^{3}$.

Some comments

■ Many people have studied the problem
Adams, Barbasch, He, Huang, Li, Loke, Mœglin, Paul, Przebinda, Trapa,

- Unitarity:
- Estimate of matrix coefficients using the explicit realization of the Weil representations.
Work of $\mathbf{L i}, \mathbf{H e}$, and an idea of Harris-Li-Sun showing the nonnegativity of a matrix coefficient integral.
- non-vanishing and compute associated cycle:
- Geometry: moment maps provide the upper bound.
- Analysis: degenerate principal series force the lower bound.
- Geometry meets Analysis: the equality.

■ Exhaustion: Combinatorics (recent breakthrough!)

- Corollary: (using [Gomez-Zhu]) For π_{χ},

Whittaker cycle $=$ Wavefront cycle .

Associated cycle formula I

■ Example $\left(G, G^{\prime}\right)=(\operatorname{Sp}(2 n, \mathbb{R}), \mathrm{O}(p, q))$

$■ \overline{\mathcal{O}} \cap \mathfrak{p} \supset \varphi\left(\varphi^{\prime-1}\left(\mathfrak{p}^{\prime} \cap \mathcal{O}^{\prime}\right)\right)$ where \mathcal{O} is a cplx. nil. G-orbit.

- Upper bound of associated cycle: we can define

$$
\vartheta^{\text {geo }}: \mathcal{K}_{\mathcal{O}^{\prime}}\left(G^{\prime}\right) \longrightarrow \mathcal{K}_{\mathcal{O}}(G)
$$

such that

$$
\mathrm{AC}\left(\Theta\left(\pi^{\prime}\right)\right) \preceq \vartheta^{\mathrm{geo}}\left(\mathrm{AC}\left(\pi^{\prime}\right)\right)
$$

for any π^{\prime} with $\operatorname{AV}\left(\pi^{\prime}\right) \subset \overline{\mathcal{O}^{\prime}}$

Associated cycle formula II

■ Recall $\left(G, G^{\prime}\right)=(\operatorname{Sp}(2 n, \mathbb{R}), \mathrm{O}(p, q))$
■ For $\mathscr{L}^{\prime} \in \mathcal{K}_{\mathcal{O}^{\prime}}\left(G^{\prime}\right), \mathscr{L}=\vartheta\left(\mathscr{L}^{\prime}\right) \in \mathcal{K}_{\mathcal{O}}(G)$,

$$
\mathscr{L}_{X}=\vartheta_{T}\left(\mathscr{L}_{X^{\prime}}\right):=\left.\operatorname{det}^{(p-q) / 2}\right|_{K_{X}} \otimes\left(\mathscr{L}_{X^{\prime}}^{\prime}\right)^{K_{2, X^{\prime}}^{\prime}} \circ \alpha
$$

$\alpha: K_{X} \longrightarrow K_{1, X^{\prime}}^{\prime}:$ a homomorphism between isotropic subgroups.
■ The twisting is crucial.
\Rightarrow admissible orbit data \rightsquigarrow admissible orbit data.
■ Support of $\vartheta\left(\mathscr{L}^{\prime}\right)$ could be reducible.

- Stable range lifting trick: Suppose $n>p+q$.

$$
\bigcup_{p, q} \operatorname{Unip}_{\mathcal{O}^{\prime} \vee}(\mathrm{O}(p, q)) \hookrightarrow \operatorname{Unip}_{\mathcal{O}^{\vee}}(\operatorname{Sp}(2 n, \mathbb{R}))
$$

Matching unipotent representations with PBP

- $\operatorname{PBP}(\check{\mathcal{O}})$ is complicate.
- $\operatorname{LS}(\check{\mathcal{O}})=\left\{\mathrm{AC}\left(\pi_{\chi}\right)\right\}$ is also complicate.

■ Proof of Exhaustion
Define descent of painted bi-partitions, compatible with the theta lifting!

$$
\begin{aligned}
& \operatorname{LS}(\check{\mathcal{O}}) \longleftarrow \mathrm{AC} \operatorname{PBP}(\check{\mathcal{O}}) \longleftrightarrow \operatorname{Unip}_{\check{\mathcal{O}}}(G) \\
& \text {, geo } \uparrow \quad \nabla \downarrow{ }^{\uparrow} \\
& \operatorname{LS}\left(\check{\mathcal{O}}^{\prime}\right) \overleftarrow{\mathrm{AC}} \operatorname{PBP}\left(\check{\mathcal{O}}^{\prime}\right) \longleftrightarrow \operatorname{Unip}_{\check{\mathcal{O}}^{\prime}}\left(G^{\prime}\right) \\
& \pi_{\tau}:=\Theta\left(\pi_{\nabla(\tau)} \otimes \chi_{\tau}^{\prime}\right) \otimes \chi_{\tau}
\end{aligned}
$$

■ The injectivity of theta lifting is crucial!

Unipotent Arthur packet

■ Arthur parameter: $\psi: W_{\mathbb{R}} \times \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \mathbf{G}^{\vee} \rtimes \operatorname{Gal}(\mathbb{C} / \mathbb{R})$.
Here $W_{\mathbb{R}}=\mathbb{C} \rtimes\langle j\rangle$.
■ Arthur's Arthur packet $\Pi_{\psi}^{A}(G)$:
\{local components of automorphic cusp. repn. \}
They are unitary by definition!
■ Unipotent Arthur parameter: $\left.\psi\right|_{\mathbb{C}^{\times}}$is trivial.
Mœglin: $\pi_{\psi, \eta}$ is zero or multiplicity free $\left(\eta \in \operatorname{Irr}\left(\pi_{1}\left(Z_{\mathbf{G}^{\vee}}(\psi)\right)\right)\right)$.
Warning: $\Pi_{\psi}^{A}(G) \cap \Pi_{\psi^{\prime}}^{A}(G) \neq \emptyset$ in general.
■ "Corollary":

$$
\Pi_{\psi}^{A}(G)=\Pi_{\psi}^{A B V}(G)
$$

■ Question: How to describe $\pi_{\psi, \eta}$ explicitly?

Dan Barabasch, M. , Binyong Sun and Chen-Bo Zhu Special unipotent representations: orthogonal and symplectic groups ArXiv e-prints: https://arxiv.org/abs/1712.05552v2

Thank you for your attention!

