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Classical groups and special unipotent representations

| G . G | G |
Dy | O(p,2n—p) 0(2n,C) 0(2n,C) D,
Cn Sp(2n,R) Sp(2n,C) | SO(2n+1,C) | B,
B, | O(p,2n+1—p) | O(2n+1,C) Sp(2n,C) Cp
Cn Mp(2n,R) Sp(2n,C) Sp(2n,C) Cn
D, O*(n) SO(2n,C) SO(2n,C) D,
Chn Sp(p, n— p) Sp(2n,C) SO(2n+1,C) | B,
Ay, U(p,n—p) GL(n,C) GL(n,C) A,
A U(r,m—r) GL(m,C) GL(m,C) A

Theorem (Barbasch-M.-Sun-Zhu)

Arthur-Barbasch-Vogan’s conj. on special unipotent repn. holds for G:
All specail unipotent representations of G are unitarizable.
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Barbasch-Vogan’s definition of unipotent representation

G: a real reductive group.
Nilpotent orbit @ in GV.
~ p: SL(2,C) — GY (Jacobson-Morozov)
~~ an infinitesimal character dp(3 (5 %)) ¢ Aov
~+ the maximal primitive ideal Z with inf. char. Ay
m Definition (Barbasch-Vogan):

An irr. admissible G-repn. is called special unipotent if
Ann ) (7) = L.

<= 7 has inf. char. A\ and AV¢(r) =0

m O: the Lusztig-Spaltenstein-Barbasch-Vogan dual of O,
which is a (metaplectic) special nilpotent orbit.

m Unips(G) := { special unipotent repn. attached to O}.
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Conjecture/Open problems

m Major open problem: Classify the unitary dual of a reductive
group:

o~

Gunitary = { irr. unitary repn. of G}.

m Philosophy: Unip(G) = the building blocks of the unitary dual.
m Conjecture: Unipyx(G) consists of unitary representations.

m Question: How many elements are there in Unipg(G)?

m Question: How to construct elements in Unipy(G)?

m Barbasch-Vogan 1985: Complete classification of unipotent repn.
of complex reductive groups.

m Vogan 1986: Classify the unitary dual of GL(n).

m Barbasch 1989: Classify the unitary dual of complex classical
groups.

m Altas of Lie group: ~ complete answer for exceptional groups.
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Counting (g, K)-module with a paticular asso. variety

m Fix regular inf. char. A € h*/ W
m integral Weyl group

W) = {we W| (A —w\d) € Z, YaecAlg,h)}

Double cell D in W(A) <— the specail repn. 79 € D
— truncated induction J %( 370

0.
m Let € A+ X* (X* is the weight lattice),

Wy={we Wlw-p=p}.
m 9\(g, K): the Groth. gp. of (g, K)-modules with inf. char. .

m Lemma:

Springer corr.

#{m € I, (g, K)(G) | AVe(r) = O}
= Y - I %(e K))

T€D
D~~0O
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Counting unipotent representations I

m Example: G = Sp(2n,R)
Ay € p(G) + X*
~> special representation 7 <+ O
m 9,(G): the Groth. gp. of (g, K)-modules with inf. char. p.

#Unipov (G) = 2" [7: 9,(G)]

W(Sp(2n)) = Sp x {£1}",

“4,(Sp(2n,R)) Z Indgzwzéxwpstgn®(axa)®1®1.

P;q,1,5,
UESS

m [T 1W>\@] = 1.

m [7:9,(G)] is counted by painted bi-partitions PBP(O).
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Example of PBP

O =17,55,53,1,1] =

PBP ;5 (Sp(2n,R)) Associated cycle
X |=|%|=|*|= *|=|*x|=|*x|=
AR ] .l [ AK ] .l * |=|*k |=|* |= * | = =|*|=
®|C eSS =|*|=|* =k |=| *
r|d x R oy e g e U:*:*
d *|=|*x|= * [=|*|=
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Nilpotent orbits with “good/bad parity”

m Bad parity (must occurs with even multiplicity in O):
even number, when GV is type B or D
{odd number, when G is type C
m O has “good parity” if O only contains
odd rows, when GV is type B or D
{even rows, when GV is type C

m )y is integral.
m Example of good parity:

O oV

Sp(14,C) SO(15,C)
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Reduction to the “good parity”

m Consider G = Sp(2n,R).
m O decompose into two parts O, (good parity) and O, (bad parity).
m Assume Oy = {ry, 71, , 7%, Tk}
Theorem (Let O} = {ry,---, 7, } € Nilgp.)
. . 1-1 .
Unlp@g(GLR) x Unipg, (Spp) —— Unipy(Spg)

Sp(2n, R)

(7', mo) > Ind ' ® mo
GL(|O}] ,R) x Sp(2ng,R) x U

Eooo.
Unip@;)(GL) = { Ind ® sgnéL(rj R) | € € 1/27 }
=1 ’

m Use theta correspondence to construct Unip@g(G).

m We assume O has good parity from now on.
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Example of descent sequences

GY SO(15,C) 0(10,C) SO(7,C)  O(4,C)

EEE B L

G, Sp(14,C) 0(10,C) Sp(6,C)  O(4,C)

Kraft-Procesi’s resolution of singularities of the closure of complex
nilpotent orbits.
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Descent of nilpotent orbits: G = Sp(2n, R)

Take O € Nil%(g¥) (nilpotent orbits with good parity).

m Descent sequence on the dual side:
0V = Oé/a O%/afl e O(\)/

O} = removing the first rows of O/,;.

Descent sequence of real classical groups:
G= G2a GQa—l to GO
® (o is a symplectic group
allow Gy = Sp(0,R) = the trivial group.
® Gap-1 = O(ps, qx)
® O} is nilpotent orbit of G}

(Gi, Gi—1) forms a reductive dual pair.

m O; = delete the first col. of O;11 and may add one box back.
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Example of descent sequences

GY SO(15,C) 0(10,C) SO(7,C) O(4,C)

[]
oY
Z ]
—[+[-[+ +[=[+ -+ [+]
O. +-[+ —|+= +|- +]
: +=+= —|+= += =
il d d
G; Sp(14,R) 0(4,6) Sp(6,R) 0(2,2)

Ohta’s resolution of singularities of a nilpotent orbit closure in
symmetric pairs.
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Construction of elements in Unipg(G)

2a 2a
X = ® Xj, a 1-dim repn. of [] Gj.
Jj=0 =0

m ;€ {1,sgn™ ", sgn™, det}
m Define a smooth repn. of G = Ga, (the symplectic group).

Ty = (wG2a»G2a71®wG2a717G2a72® © QWa, Gy ®X) G24-1X G24—2X%-X Go

Theorem (Barbasch-M.-Sun-Zhu)

Let OV be an orbit with good parity. Then
® either my =0 or

® 7, € Unips(G) and unitarizable.

® Moreover,
Unippv (G) = {my [ m #0}.
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Example: Coincidences of theta lifting

Lift to G = Sp(6,R) from real forms of G = O(4,C).
O =321 and O = 23.

0(4,0) O(sgn™ )

0(3,1) 0(1) O(sgn™ )

~
~
0(2,2) 6(1) O(sgn™ ) O(sgn—T)
~
0(1,3) 6(1) O(sgn™ )
~

0(0,4) O(sgn ")

14/20



Some comments

m Many people have studied the problem
Adams, Barbasch, He, Huang, Li, Loke, Mceglin, Paul, Przebinda,
Trapa, ....
m Unitarity:
® Estimate of matrix coeflicients using the explicit realization of the
Weil representations.
Work of Li, He, and an idea of Harris-Li-Sun showing the
nonnegativity of a matrix coefficient integral.
m non-vanishing and compute associated cycle:
® Geometry: moment maps provide the upper bound.
® Analysis: degenerate principal series force the lower bound.
® Geometry meets Analysis: the equality.

m Exhaustion: Combinatorics (recent breakthrough!)

m Corollary: (using [Gomez-Zhu]) For 7y,

Whittaker cycle = Wavefront cycle.
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Associated cycle formula I

m Example (G, G') = (Sp(2n,R), O(p, q))
Mp7n @ M , N

p 2 Sym,, ® Sym,,

\

X = ABT = (ATA,BTB)

\\ﬂ‘

m ONp Do tp' NO)) where O is a cplx. nil. G-orbit.
m Upper bound of associated cycle: we can define

¥8°°: /CC)/(G,) — /C(')(G)

such that
AC(O(7")) =< 98°(AC(r")),

for any 7’ with AV (') ¢ O’
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Associated cycle formula II

m Recall (G, &) = (Sp(2n,R), O(p, q))
m For &' € Ko/(G), £ =0(Z") € Ko(G),

Ly = I (L) = detP 02| @ (L) ox o a,

a: Kx — K] y,: a homomorphism between isotropic subgroups.
m The twisting is crucial.
= admissible orbit data ~~ admissible orbit data.

Support of 9(.£") could be reducible.
m Stable range lifting trick: Suppose n > p+ ¢.

|J Unipor (O(p, 9)) < Unipov (Sp(2n, R))
b,q
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Matching unipotent representations with PBP

m PBP(O) is complicate.
m LS(0) = { AC(7y) } is also complicate.
m Proof of Exhaustion

Define descent of painted bi-partitions,

compatible with the theta lifting!

T = O(Ty(r) ® o) ® xr

m The injectivity of theta lifting is crucial!
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Unipotent Arthur packet

m Arthur parameter: 1): Wg x SLy(C) — G x Gal(C/R).
Here Wr = C x (j).
m Arthur’s Arthur packet HQ‘E(G):
{local components of automorphic cusp. repn. }

They are unitary by definition!

Unipotent Arthur parameter: 1|cx is trivial.
Moeglin: 7y, is zero or multiplicity free (n € Irr(m(Zgv (¢)))).
Warning: II(G) N1, (G) # () in general.

“Corollary™:

I, (G) = I, ”V(G)

Question: How to describe 7y, , explicitly?
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Thank you for your attention!
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