2017 秋季 代数数论

主要内容,简要介绍类域论的知识。

上课时间:第1周到第8周,周一11-12节和周三9-10节。 地点: 上院306

课本:

参考书:

  1. [S] Serre, A course in Arithmetic
  2. [SL]Serre, Local Fields
  3. [SD] Swinnerton-Dyer, A Brief Guide to Algebraic Number Theory
  4. [N] Neukirch, Algebraic Number Theory
  5. Weil, Basic Number Theory
  6. [AM] Atiyah and MacDonald, Introduction to Commutative Algebra
  7. [CF] Algebraic Number Theory, Proceedings of an Instructional Conference Organized by the London Mathematical Society
  8. [M] J.S. Milne, Class Field Theory
  9. [A] Michael Artin on noncommutative ring theory
  10. [FD] Farb and Dennis, Noncommutative Algebra, Chapter 4: The Brauer Group

思考题:

  • 第二章, 问题 4,12,习题 2.2
  • 第三章, 问题 3,习题 3.4

期末报告备选问题:

  1. Gamma函数与Sin函数的乘积公式. Erica Chan, The Sine Product Formula and the Gamma Function
  2. 复数域上的椭圆曲线 J.S. Milne, Elliptic Curves; Silverman, The Arithmetic of Elliptic Curves, An online lecture note
  3. Galois理论的回顾, Trace和Norm [K] 附录, [N] Section I.2
  4. 分圆域(Galois群,整数环,理想的分解等) [K] 相关章节, [N] Section I.10 [SD] Section 13
  5. 整闭整环及其扩张. [AM] Chapter 5, [N] Section I.2
  6. 局部化,局部环. [N] Section I.11
  7. Noether环,Artin环及例子 [AM] Chapter 6-8
  8. Dedekind环的定义,基本性质及例子. [N] Section I.3 [AM] Chapter 9 [CF] Section I.2
  9. 共轭差积与判别式 (Difference and Discriminant) [N] III.2 [K] 6.3(b)
  10. 理想及分式理想的分解 [N] Section I.3 [AM] Chapter 4, Chapter 9 [CF] Section I.2
  11. 逆向极限, pro-finite group及在Galois理论中的应用. [CF] Section V.1
  12. 完备局部域, Hensel引理及p-aidc域的乘法群结构. [S] Chapter 2 [N] Proposition II.5.7
  13. 不变测度及命题6.81,6.82的证明. [K] 6.4(g)节 [SD] 附录
  14. Pontrjagin对偶, 例子,及命题6.79的证明. [K] 6.4(h)节.
  15. 中心单代数及Brauer群的定义 [A] [M] Chapter 4 [SL] X.5, [FD]
  16. Brauer群的例子(有限域,局部域及inv映射) [A] [M] Chapter 4, [SL] X.5 XII, [FD]
  17. 关于素数分布的定理 [K] 第七章相关部分
  18. L-函数的函数方程 [K] 第七章相关部分
  19. 类域论在函数域情况下的结果. [K] 课本相关内容 [N] Section I.14

期末报告   地点:数学楼1106,2017年12月17日
题目及时间:

序号 报告时间 姓名 题目
1 09:00 -- 09:30 岳宸阳  Gamma函数与Sin函数的乘积公式
2 09:30 -- 10:00 阚晓鹏 复数域上的椭圆曲线 J.S. Milne, Elliptic Curves; Silverman, The Arithmetic of Elliptic Curves
3 10:00 -- 10:30 梁乐 Galois理论的回顾, Trace和Norm [K] 附录, [N] Section I.2
4 10:30 -- 11:00 肖凌 分圆域(Galois群,整数环,理想的分解等) [K] 相关章节, [N] Section I.10 [SD] Section 13
5 11:00 -- 11:30 侯家齐 整闭整环及其扩张. [AM] Chapter 5, [N] Section I.2
6 11:30 -- 12:00 钟宇涛 Noether环,Artin环及例子 [AM] Chapter 6-8
7 13:00 -- 13:30 吴怡婕 Dedekind环的定义,基本性质及例子. [N] Section I.3 [AM] Chapter 9 [CF] Section I.2
8 13:30 -- 14:00 吴斌香 共轭差积与判别式 (Difference and Discriminant) [N] III.2 [K] 6.3(b)
9 14:00 -- 14:30 许逸凡 理想及分式理想的分解 [N] Section I.3 [AM] Chapter 4, Chapter 9 [CF] Section I.2
10 14:30 -- 15:00 张正鑫 逆向极限, pro-finite group及在Galois理论中的应用. [CF] Section V.1
11 15:00 -- 15:30 万仁星 完备局部域, Hensel引理及p-aidc域的乘法群结构. [S] Chapter 2 [N] Proposition II.5.7
12 15:30 -- 16:00 张亚智 不变测度及命题6.81,6.82的证明. [K] 6.4(g)节 [SD] 附录
13 16:00 -- 16:30 陈雨阳 Pontrjagin对偶, 例子,及命题6.79的证明. [K] 6.4(h)节.
14 16:30 -- 17:00 盛晗晗 中心单代数及Brauer群的定义 [A] [M] Chapter 4 [SL] X.5,  [FD]
15 17:00 -- 17:30 沈博健 Brauer群的例子(有限域,局部域及inv映射) [A] [M] Chapter 4 [SL] X.5 XII, [FD]
16 17:30 -- 18:00 郑振洲 关于素数分布的定理 [K] 第七章相关部分